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Learn how to build:Learn how to build:

scalable, stable, maintainable and manageable scalable, stable, maintainable and manageable 

network applications utilizing any protocol  network applications utilizing any protocol  

with Apache MINAwith Apache MINA
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Presenter
Who is Trustin Lee?

Founder of Netty framework

Cofounder and VP of Apache MINA

JBoss Remoting project lead

Wrote Java™ New I/O API (NIO)-based massive network 

applications

• Distributed SMS gateway – 10M msgs / day

• OSGi-based asynchronous RPC server with Hessian protocol

Didn't write a book yet!  ;)
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Introduction
What is Apache MINA?

A Java open-source network application framework

Abstract API
• Event-driven

• Asynchronous

• Unit-testable

Implementations
• Sockets & datagrams – Java NIO & APR via Tomcat Native

• Serial ports – RXTX.org

• In-VM pipes

• <Your favorite transports here: SCTP, multicast, Infiniband...>
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Introduction
Why should I use it?

Maintainable and reusable
• Networking engine – MINA I/O service
• Protocol codec – MINA codec framework
• Your business logic

Extensible
• Runtime modification of application behavior using 'filters'

Manageable
• Introspection of connections and services via JMX™ API

Unit-testable
• Abstract API
• Out-of-the-box mock objects
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Introduction
What does it look like?

I/O ServiceI/O Service

Remote PeerRemote Peer

I/O HandlerI/O Handler

I/O SessionI/O Session

I/O Filter ChainI/O Filter Chain

I/O Filter #1I/O Filter #1

I/O Filter #2I/O Filter #2

I/O Filter #3I/O Filter #3

Performs actual I/O

Filters events & requests

A connection

<Your protocol logic>
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IoSession & IoBuffer
Writing a message was never easier than this.

// Build a string to send.
CharsetEncoder = ...;

IoSession session = ...;

IoBuffer buffer = IoBuffer.allocate(16);

buffer.setAutoExpand(true)
      .putString("It is ", encoder)
      .putString(new Date().toString(), encoder)
      .putString(" now.\r\n", encoder).flip();

// Asynchronous write request.

session.write(buffer);
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IoSession
Connection, Socket, Channel... 

Abstracts a underlying transport’s connection away

Provides asynchronous operations to I/O service
• Write, close...

• All asynchronous
• Returns IoFuture (WriteFuture, CloseFuture...)

• A set of IoFutureListener can be added for notification

Provides I/O statistics
• Read bytes, written bytes, last I/O time...
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IoBuffer
Why don’t you just use NIO ByteBuffer?

Rich binary & text manipulation methods

• Unsigned value, enum, string, Java Object...

On-demand automatic expansion and shrinkage

More control over allocation mechanism

More extensible than ByteBuffer

• provides all methods in ByteBuffer
• provides easy wrap · unwrap methods
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IoHandler
Let’s write back what’s received.

public class EchoHandler implements IoHandler {
  public void messageReceived(IoSession s, Object msg)
  {
    IoBuffer buffer = (IoBuffer) msg;
    s.write(buffer.duplicate());
  }

  public void exceptionCaught(IoSession s, Throwable e)
  {
    s.close();
  }

  public void sessionOpened(IoSession s) {}
  public void messageSent(IoSession s, Object msg) {}
  public void sessionIdle(IoSession s, IdleStatus stat) {}
  public void sessionClosed(IoSession s) {}
}
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IoService
IoAcceptor is for the server side.

public class Main {
  public static void main(String[] args) ...
  {
    IoAcceptor acceptor = new NioSocketAcceptor();
    acceptor.setHandler(new EchoHandler());
    acceptor.bind(new InetSocketAddress(8080));
    ...
    acceptor.unbind(new InetSocketAddress(8080));
  }
}
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IoService
IoConnector is for the client side.

public class Main {
  public static void main(String[] args) ...
  {
    IoConnector connector = new NioSocketConnector();
    connector.setHandler(new MyHandler());
    ConnectFuture future = connector.connect(
        new InetSocketAddress("example.com", 8080));
   
    IoSession session = future.await().getSession();

    session.write(...).await();      // WriteFuture
    session.close().await();         // CloseFuture
  }
}
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IoService
Switching to a different transport was never easier than this.

IoAcceptor acceptor = new NioSocketAcceptor();
IoAcceptor acceptor = new AprSocketAcceptor();
...

IoConnector connector = new NioSocketConnector();
IoConnector connector = new SerialConnector();
...
connector.connect(new InetSocketAddress(...));
connector.connect(new SerialAddress(...));
...
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IoFilterChain & IoFilter
Imagine hot-deployable Servlet filters.

// Enable logging.
acceptor.getFilterChain().addLast(
        "logger", new LoggingFilter());

// Enable SSL.
acceptor.getFilterChain().addLast(
        "ssl", new SslFilter());

// Enable compression for an individual session.
session.getFilterChain().addBefore(
        "ssl", "compressor",
        new CompressionFilter());

// Zap all of them.
session.getFilterChain().clear();
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IoFilter
One-stop solution for cross-cutting concerns:

Logging

Overload prevention

Failure injection

On-demand profiler

Remote peer blacklisting

Keep-alive · timeout

More to come – whatever you want to intercept!
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Protocol Codecs
Why do we need a protocol codec?

It is a bad idea to implement a protocol only with IoBuffers.

• Packet fragmentation and assembly
• Separation of concerns

Codecs are often reusable – MINA provides:

• Text line codec
• Object stream codec
• HTTP codec

MINA also provides reusable components to build a codec.

• Solutions for packet fragmentation and assembly issue
• Finite state machine framework dedicated to codec construction
• Support for multi-layered protocol (e.g. Kerberos)
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Protocol Codecs
What does it look like with a protocol codec?

I/O ServiceI/O Service

Remote PeerRemote Peer

I/O HandlerI/O Handler

I/O SessionI/O Session

I/O Filter ChainI/O Filter ChainProtocolCodecFactoryProtocolCodecFactory

ProtocolEncoderProtocolEncoder

ProtocolDecoderProtocolDecoder
ProtocolCodecFilterProtocolCodecFilter

POJO  IoBuffer→

IoBuffer  POJO→
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Protocol Codecs
Echo server redux – TextLineProtocolCodecFactory kicks in!

public class EchoHandler extends IoHandlerAdapter
{
  public void messageReceived(IoSession s, Object m)
  {
    s.write((String) m);
  }
  ...
}
...
acceptor.getFilterChain().addLast(
      "codec", new ProtocolCodecFilter(
                       new TextLineCodecFactory()));
...
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Protocol Codecs
Custom AJAX-ready HTTP server in 10 minutes!?

public class HttpHandler extends IoHandlerAdapter {
  public void messageReceived(IoSession s, Object msg)
  {
    HttpRequest req = (HttpRequest) msg;
    MutableHttpResponse res = new DefaultHttpResponse();
    IoBuffer content = ...;
    res.setContent(content);
    res.normalize(req);
    s.write(res);
  }
}
...
acceptor.getFilterChain().addLast(

"codec", new ProtocolCodecFilter(
new HttpProtocolCodecFactoryFactory()));

...
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Thread Models
It’s as easy as inserting an IoFilter.

// Single thread model by default.
...

// One thread pool – suitable for typical servers.

//// Place CPU-bound tasks first,
acceptor.getFilterChain().addLast("compression", ...);
acceptor.getFilterChain().addLast("codec", ...);

//// And then thread pool.
acceptor.getFilterChain().addLast(

“executor”, new ExecutorFilter(
new OrderedThreadPoolExecutor(16)));

//// Use UnorderedThreadPoolExecutor or your favorite
//// Executor instance if you don't want event ordering.
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Management
IoService, IoSession and IoFilter are exposed as JMX MBean.

MBeanServer mbs = ...;

mbs.registerMBean(new IoServiceMBean(acceptor),
                  new ObjectName(...));

mbs.registerMBean(new IoSessionMBean(session),
                  new ObjectName(...));

mbs.registerMBean(new IoFilterMBean(executorFilter),
                  new ObjectName(...));
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Management
What you can do in runtime with MINA MBeans:

Monitor various performance counters

Adjust all socket parameters

Start · stop an IoService

Modify an IoSession based on OGNL expression
• Find all session originating from '192.168.0.x' and close them all!

Insertion and removal of an IoFilter
• Enable or disable whatever on demand!

• Logging
• Profiling
• Changing thread model
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Future
Major tasks ahead:

Zero copy I/O
• Looking for better alternative to IoBuffer

IoConnector improvements
• Proxy support – patch pending
• Automatic reconnection

Better documentation

Protocol codec generator
• Rapid legacy & new protocol implementation

Tools based on a protocol codec implementation
• Protocol analyzing proxy
• Intelligent L7 switch & firewall
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Summary
Apache MINA is designed exactly for:

Any kind of network applications
• Stable
• Scalable
• Extensible
• Manageable
• Unit-testable

Simple, complex, text, binary, legacy and evolving protocols

You got to try it now!  ;)
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For More Information
Vibrant community – that's what we are.

WWW    – MINA.apache.org

E-mail    – users@mina.apache.org

                 trustin@apache.org (me)

Please talk to me right after this session.
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Trustin Lee
Principal Software Engineer
Red Hat, Inc.
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