
RAPID NETWORK APPLICATION DEVELOPMENT RAPID NETWORK APPLICATION DEVELOPMENT

WITH APACHE MINAWITH APACHE MINA

Trustin Lee
Principal Software Engineer
Red Hat, Inc.

TS-4814

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Learn how to build:Learn how to build:

scalable, stable, maintainable and manageable scalable, stable, maintainable and manageable

network applications utilizing any protocol network applications utilizing any protocol

with Apache MINAwith Apache MINA

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Agenda
Before the adventure...

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Presenter
Who is Trustin Lee?

Founder of Netty framework

Cofounder and VP of Apache MINA

JBoss Remoting project lead

Wrote Java™ New I/O API (NIO)-based massive network

applications

• Distributed SMS gateway – 10M msgs / day

• OSGi-based asynchronous RPC server with Hessian protocol

Didn't write a book yet! ;)

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Agenda
What, Why and How?

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Introduction
What is Apache MINA?

A Java open-source network application framework

Abstract API
• Event-driven

• Asynchronous

• Unit-testable

Implementations
• Sockets & datagrams – Java NIO & APR via Tomcat Native

• Serial ports – RXTX.org

• In-VM pipes

• <Your favorite transports here: SCTP, multicast, Infiniband...>

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Introduction
Why should I use it?

Maintainable and reusable
• Networking engine – MINA I/O service
• Protocol codec – MINA codec framework
• Your business logic

Extensible
• Runtime modification of application behavior using 'filters'

Manageable
• Introspection of connections and services via JMX™ API

Unit-testable
• Abstract API
• Out-of-the-box mock objects

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Introduction
What does it look like?

I/O ServiceI/O Service

Remote PeerRemote Peer

I/O HandlerI/O Handler

I/O SessionI/O Session

I/O Filter ChainI/O Filter Chain

I/O Filter #1I/O Filter #1

I/O Filter #2I/O Filter #2

I/O Filter #3I/O Filter #3

Performs actual I/O

Filters events & requests

A connection

<Your protocol logic>

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Agenda
Let’s learn by looking at examples!

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 10

IoSession & IoBuffer
Writing a message was never easier than this.

// Build a string to send.
CharsetEncoder = ...;

IoSession session = ...;

IoBuffer buffer = IoBuffer.allocate(16);

buffer.setAutoExpand(true)
 .putString("It is ", encoder)
 .putString(new Date().toString(), encoder)
 .putString(" now.\r\n", encoder).flip();

// Asynchronous write request.

session.write(buffer);

2008 JavaOneSM Conference | java.sun.com/javaone | 11

IoSession
Connection, Socket, Channel...

Abstracts a underlying transport’s connection away

Provides asynchronous operations to I/O service
• Write, close...

• All asynchronous
• Returns IoFuture (WriteFuture, CloseFuture...)

• A set of IoFutureListener can be added for notification

Provides I/O statistics
• Read bytes, written bytes, last I/O time...

2008 JavaOneSM Conference | java.sun.com/javaone | 12

IoBuffer
Why don’t you just use NIO ByteBuffer?

Rich binary & text manipulation methods

• Unsigned value, enum, string, Java Object...

On-demand automatic expansion and shrinkage

More control over allocation mechanism

More extensible than ByteBuffer

• provides all methods in ByteBuffer
• provides easy wrap · unwrap methods

2008 JavaOneSM Conference | java.sun.com/javaone | 13

IoHandler
Let’s write back what’s received.

public class EchoHandler implements IoHandler {
 public void messageReceived(IoSession s, Object msg)
 {
 IoBuffer buffer = (IoBuffer) msg;
 s.write(buffer.duplicate());
 }

 public void exceptionCaught(IoSession s, Throwable e)
 {
 s.close();
 }

 public void sessionOpened(IoSession s) {}
 public void messageSent(IoSession s, Object msg) {}
 public void sessionIdle(IoSession s, IdleStatus stat) {}
 public void sessionClosed(IoSession s) {}
}

2008 JavaOneSM Conference | java.sun.com/javaone | 14

IoService
IoAcceptor is for the server side.

public class Main {
 public static void main(String[] args) ...
 {
 IoAcceptor acceptor = new NioSocketAcceptor();
 acceptor.setHandler(new EchoHandler());
 acceptor.bind(new InetSocketAddress(8080));
 ...
 acceptor.unbind(new InetSocketAddress(8080));
 }
}

2008 JavaOneSM Conference | java.sun.com/javaone | 15

IoService
IoConnector is for the client side.

public class Main {
 public static void main(String[] args) ...
 {
 IoConnector connector = new NioSocketConnector();
 connector.setHandler(new MyHandler());
 ConnectFuture future = connector.connect(
 new InetSocketAddress("example.com", 8080));

 IoSession session = future.await().getSession();

 session.write(...).await(); // WriteFuture
 session.close().await(); // CloseFuture
 }
}

2008 JavaOneSM Conference | java.sun.com/javaone | 16

IoService
Switching to a different transport was never easier than this.

IoAcceptor acceptor = new NioSocketAcceptor();
IoAcceptor acceptor = new AprSocketAcceptor();
...

IoConnector connector = new NioSocketConnector();
IoConnector connector = new SerialConnector();
...
connector.connect(new InetSocketAddress(...));
connector.connect(new SerialAddress(...));
...

2008 JavaOneSM Conference | java.sun.com/javaone | 17

IoFilterChain & IoFilter
Imagine hot-deployable Servlet filters.

// Enable logging.
acceptor.getFilterChain().addLast(
 "logger", new LoggingFilter());

// Enable SSL.
acceptor.getFilterChain().addLast(
 "ssl", new SslFilter());

// Enable compression for an individual session.
session.getFilterChain().addBefore(
 "ssl", "compressor",
 new CompressionFilter());

// Zap all of them.
session.getFilterChain().clear();

2008 JavaOneSM Conference | java.sun.com/javaone | 18

IoFilter
One-stop solution for cross-cutting concerns:

Logging

Overload prevention

Failure injection

On-demand profiler

Remote peer blacklisting

Keep-alive · timeout

More to come – whatever you want to intercept!

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Protocol Codecs
Why do we need a protocol codec?

It is a bad idea to implement a protocol only with IoBuffers.

• Packet fragmentation and assembly
• Separation of concerns

Codecs are often reusable – MINA provides:

• Text line codec
• Object stream codec
• HTTP codec

MINA also provides reusable components to build a codec.

• Solutions for packet fragmentation and assembly issue
• Finite state machine framework dedicated to codec construction
• Support for multi-layered protocol (e.g. Kerberos)

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Protocol Codecs
What does it look like with a protocol codec?

I/O ServiceI/O Service

Remote PeerRemote Peer

I/O HandlerI/O Handler

I/O SessionI/O Session

I/O Filter ChainI/O Filter ChainProtocolCodecFactoryProtocolCodecFactory

ProtocolEncoderProtocolEncoder

ProtocolDecoderProtocolDecoder
ProtocolCodecFilterProtocolCodecFilter

POJO IoBuffer→

IoBuffer POJO→

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Protocol Codecs
Echo server redux – TextLineProtocolCodecFactory kicks in!

public class EchoHandler extends IoHandlerAdapter
{
 public void messageReceived(IoSession s, Object m)
 {
 s.write((String) m);
 }
 ...
}
...
acceptor.getFilterChain().addLast(
 "codec", new ProtocolCodecFilter(
 new TextLineCodecFactory()));
...

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Protocol Codecs
Custom AJAX-ready HTTP server in 10 minutes!?

public class HttpHandler extends IoHandlerAdapter {
 public void messageReceived(IoSession s, Object msg)
 {
 HttpRequest req = (HttpRequest) msg;
 MutableHttpResponse res = new DefaultHttpResponse();
 IoBuffer content = ...;
 res.setContent(content);
 res.normalize(req);
 s.write(res);
 }
}
...
acceptor.getFilterChain().addLast(

"codec", new ProtocolCodecFilter(
new HttpProtocolCodecFactoryFactory()));

...

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Thread Models
It’s as easy as inserting an IoFilter.

// Single thread model by default.
...

// One thread pool – suitable for typical servers.

//// Place CPU-bound tasks first,
acceptor.getFilterChain().addLast("compression", ...);
acceptor.getFilterChain().addLast("codec", ...);

//// And then thread pool.
acceptor.getFilterChain().addLast(

“executor”, new ExecutorFilter(
new OrderedThreadPoolExecutor(16)));

//// Use UnorderedThreadPoolExecutor or your favorite
//// Executor instance if you don't want event ordering.

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Agenda
JMX integration – brain-dead easy!

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Management
IoService, IoSession and IoFilter are exposed as JMX MBean.

MBeanServer mbs = ...;

mbs.registerMBean(new IoServiceMBean(acceptor),
 new ObjectName(...));

mbs.registerMBean(new IoSessionMBean(session),
 new ObjectName(...));

mbs.registerMBean(new IoFilterMBean(executorFilter),
 new ObjectName(...));

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Management
What you can do in runtime with MINA MBeans:

Monitor various performance counters

Adjust all socket parameters

Start · stop an IoService

Modify an IoSession based on OGNL expression
• Find all session originating from '192.168.0.x' and close them all!

Insertion and removal of an IoFilter
• Enable or disable whatever on demand!

• Logging
• Profiling
• Changing thread model

2008 JavaOneSM Conference | java.sun.com/javaone | 27

2008 JavaOneSM Conference | java.sun.com/javaone | 28

2008 JavaOneSM Conference | java.sun.com/javaone | 29

2008 JavaOneSM Conference | java.sun.com/javaone | 30

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Agenda
A lot more to come!

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Future
Major tasks ahead:

Zero copy I/O
• Looking for better alternative to IoBuffer

IoConnector improvements
• Proxy support – patch pending
• Automatic reconnection

Better documentation

Protocol codec generator
• Rapid legacy & new protocol implementation

Tools based on a protocol codec implementation
• Protocol analyzing proxy
• Intelligent L7 switch & firewall

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Agenda
So, what’s the verdict?

Presenter

Introduction

Core Components

Management

Future

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Summary
Apache MINA is designed exactly for:

Any kind of network applications
• Stable
• Scalable
• Extensible
• Manageable
• Unit-testable

Simple, complex, text, binary, legacy and evolving protocols

You got to try it now! ;)

2008 JavaOneSM Conference | java.sun.com/javaone | 35

For More Information
Vibrant community – that's what we are.

WWW – MINA.apache.org

E-mail – users@mina.apache.org

 trustin@apache.org (me)

Please talk to me right after this session.

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Trustin Lee
Principal Software Engineer
Red Hat, Inc.

TS-4814

	PRESENTATION TITLE UP TO A MAXIMUM OF THREE LINES FONT IS SUN SANS SEMIBOLD, 30PT
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Summary
	For More Information
	Slide 36

